Solving differential eigenproblems via the spectral Tau method
نویسندگان
چکیده
The spectral Tau method to compute eigenpairs of ordinary differential equations is implemented as part the Toolbox—a numerical library for solution integro-differential problems. This mathematical software enables a symbolic syntax be applied objects manipulate and solve problems with ease accuracy. explained in detail its application various illustrated: approximations linear, quadratic, nonlinear eigenvalue
منابع مشابه
The Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model
This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...
متن کاملConvergence analysis of spectral Tau method for fractional Riccati differential equations
In this paper, a spectral Tau method for solving fractional Riccati differential equations is considered. This technique describes converting of a given fractional Riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. We use fractional derivatives in the Caputo form. Convergence analysis of the proposed method is given an...
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملconvergence analysis of spectral tau method for fractional riccati differential equations
in this paper, a spectral tau method for solving fractional riccati differential equations is considered. this technique describes converting of a given fractional riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. we use fractional derivatives in the caputo form. convergence analysis of the proposed method is given an...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2022
ISSN: ['1017-1398', '1572-9265']
DOI: https://doi.org/10.1007/s11075-022-01366-z